

Danube GeoHeCo

Technical and Technological criteria

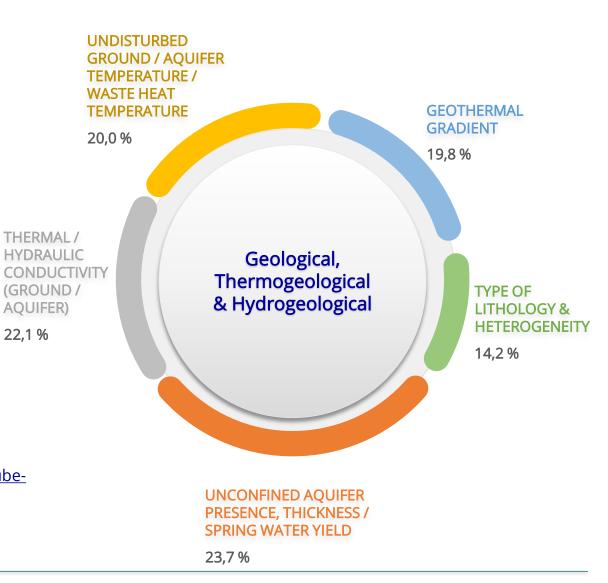
Sub-criteria influencing the Technical and Technological criteria category in order of their influence on the shallow geothermal system design determined by experts

Monthly peak heating and cooling loads have the highest significance when designing shallow geothermal system in Technical and Technological criterium

For more information visit: <u>https://interreg-danube.eu/projects/danube-geoheco</u>

This infographic was supported as part of Danube GeoHeCo, an Interreg Danube Region Programme project co-funded by the European Union.

CRITERIA CATALOGUE – Optimization of shallow geothermal hybrid systems Geological-Thermogeological-Hydrogeological criteria



Danube GeoHeCo

Sub-criteria influencing the Thermogeological Geological, & Hydrogeological category in order of their influence on the shallow geothermal system design determined by experts

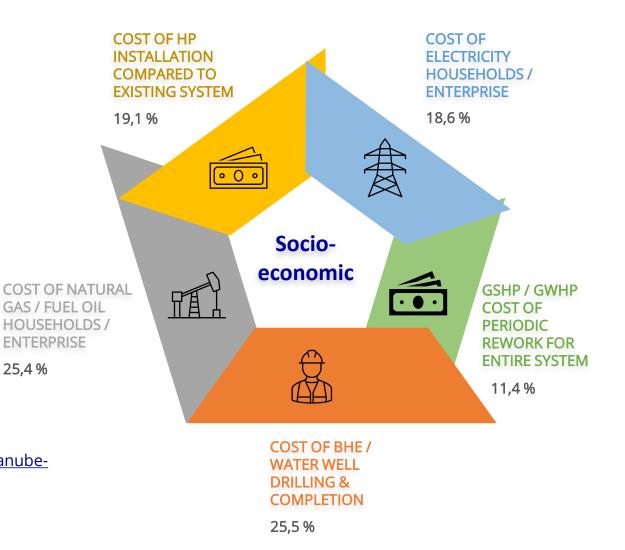
Unconfined aquifer presence, thickness or spring water yield has highest significance when the geothermal designing shallow Geological, system in Thermogeological & Hydrogeological criterium

For more information visit: https://interreg-danube.eu/projects/danubegeoheco

This infographic was supported as part of Danube GeoHeCo, an Interreg Danube Region Programme project co-funded by the European Union.

22,1 %

Interreg Co-funded by **Danube Region** the European Union


Danube GeoHeCo

Socioeconomic criteria

Sub-criteria influencing the Socioeconomic category in order of their influence on the shallow geothermal system design determined by experts (decision makers – DMs)

Cost of BHE or water well drilling and completion has the highest significance when designing shallow geothermal system in Socioeconomic criterium

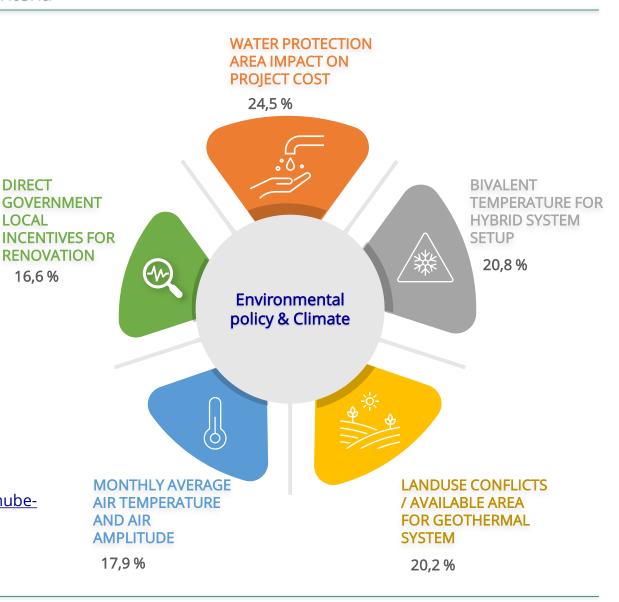
For more information visit: https://interreg-danube.eu/projects/danubegeoheco

This infographic was supported as part of Danube GeoHeCo, an Interreg Danube Region Programme project co-funded by the European Union.

25,4%

 Interreg
 Co-funded by

 Danube Region
 the European Union


Danube GeoHeCo

Environmental policy and Climate criteria

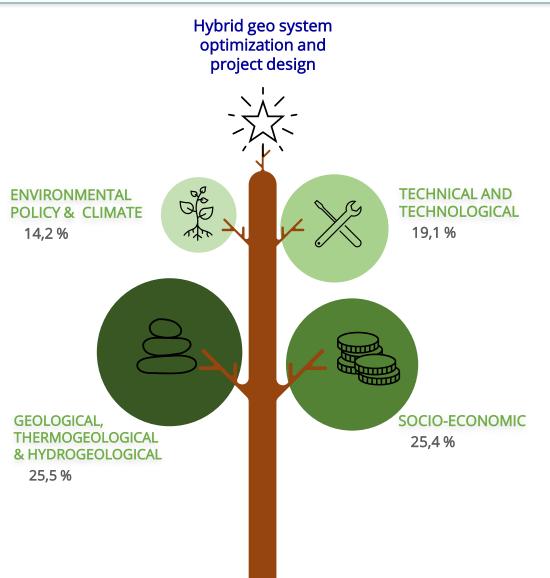
Sub-criteria influencing the Environmental policy and Climate category in order of their influence on the shallow geothermal system design determined by experts

Water protection area impact on project cost has the highest significance when designing shallow geothermal system in Environmental policy and Climate criterium

For more information visit: <u>https://interreg-danube.eu/projects/danube-geoheco</u>

This infographic was supported as part of Danube GeoHeCo, an Interreg Danube Region Programme project co-funded by the European Union.

Hybrid geo system optimization and project design goal


Danube GeoHeCo

The Criteria Catalogue helps the project designers to focus on the relevant parameters

Criteria influencing the Hybrid geo system optimization and project design goal in order of the influence on the shallow geothermal system design determined by experts

Geological, Thermogeological and Hydrogeological criteria have the highest significance when designing hybrid shallow geothermal system

For more information visit: <u>https://interreg-danube.eu/projects/danube-geoheco</u>

This infographic was supported as part of Danube GeoHeCo, an Interreg Danube Region Programme project co-funded by the European Union.

Hybrid geo system optimization and project design goal

The Criteria Catalogue was designed to determine the most influencing factors in the design of the shallow geothermal hybrid systems

20 criteria were evaluated by using the AHP method on results of the questionnaire filled by experts in the shallow geothermal system design

Danube GeoHeCo

The most influencing criteria are Monthly peak heating & cooling loads, Cost of BHE/Water well drilling and completion, as well as Cost of natural gas/fuel oil for households/enterprise

Monthly peak heating and cooling loads	Unconfined aquifer presence, thickness or spring water yield	Geothermal gradient	Cost of electricity households / enterprise		Monthly heating and cooling energy demand	Bivalent temperature for hybrid system setup
Cost of BHE / water well drilling and completion	Thermal / hydraulic conductivity for ground / aquifer	Cost of HP installation compared to existing system	Drilling depth of BHE and well geometry and completion	he Monti tempe	of lithology and eterogenity hly average air erature and air implitude	Installation year of existing system Direct government local incentives for renovation
Cost of natural gas / fuel oil households / enterprise	Undisturbed ground / aquifer temperature / waste heat temperature	Water protection area impact on project cost		Bł	HE thermal ance / well loss	GSHP / GWHP cost of periodic rework for entire system

For more information visit: <u>https://interreg-danube.eu/projects/danube-geoheco</u>

This infographic was supported as part of Danube GeoHeCo, an Interreg Danube Region Programme project co-funded by the European Union.